国产亚洲精品2024自在线_日韩无砖专区体验区_岛国在线播放v片免费_黄色国产一级毛片_青草国产日韩亚洲精品_成人免费在线午夜_国产精品黄片AV_日韩午夜一区二区在线_婷婷久久综合欧美午夜网_伊人蕉久资源福利视频

Chinese

Advisory hotline: 4008-557-528

hot key words: Dongguan skived fin heat sink vendor Shenzhen skived fin heat sink vendor Dongguan PV inverter heat sink PV inverter heat sink vendor Jiangsu skived fin heat sink vendor Custom SVG heat pipe thermal module

3C products are also called information home appliances, which typically mean computers, telecommunications, and consumer electronics. There are a wide variety of products with a huge demand. China has become the worldwide largest 3C consumption market for 3C products. With the enhancement of the financial condition and income of our citizens, there is a higher demand for the quality of electronic products. Companies launch products with better configuration, better performance, andbetter designs in order to satisfy consumers
There are a great number of factors which affect the quality of electronic products and cooling is a factor that could not be neglected. Especially after the development of the "Samsung battery-gate" event in 2016, electronics manufacturers pay more attention to the cooling performance and safety of their products. How to make sure the cooling of an electronic product meet the stringent design requirements? The best approach is to plan for thermal management at the beginning of the product design cycle so as to acquire the optimal cooling solution. Winshare Thermal is an outstanding cooling techniques supplier, who can provide the cooling solutions for IT telecommunication electronics products including mainboard cooling, CPU cooling, graphics card cooling, radio frequency module cooling,RU cooling, game console cooling,VR cooling, IPC cooling, server cooling, central variable frequency air conditioner cooling,TEC cooling, etc.
The target to be achieved by the simulation of the cooling solution:
PCB source temperature ≤100
CPU temperature ≤80℃
Schematic of simulation model and relevant parameters:
(1)

DCDC output

Thermal conductivity:10W/(m*K) Power:5W

CPU chipset

Thermal conductivity:10W/(m*k) Power:10W

PCB MST

Thermal conductivity:15W/(m*K) Power:5W

CPU PCB

Thermal conductivity:15W/(m*K) Power:4W

CPU heat sink

Dimensions: 125*95*6mm, base plate thickness:2mm, fin count: 10pcs, thickness: 0.6mm;Thermal conductivity: AL-extru. 180W/(m*K)

CU block

Dimensions:41*41*4.7, Thermal conductivity:385 W/(m*k)

Thermal grease

Thickness: 0.3mm,Thermal conductivity:3.5W/(m*K)

Soldering approach

Solder paste 4258,Thermal conductivity:48W/(m*k) 0.2mm

 
(2)

Front side of the grille

Dimensions:170*27mm; Open area ratio:0.5

Right side of the grille

Dimensions:35*30 mm; Open area ratio:0.6

Back side of the grille

Dimensions:30*30 mm; Open area ratio::0.7

fan

Dimensions:30*30*10 mm

 
(3)

Top side of mainboard

Dimensions:140*170mm; Thermal conductivity:10W/(m*k); Power:3W

Back side of heat source

0.8W/pcs

Front side of heat source

Left row:0.8W/pcs; right row: 1.2W/pcs;
The Row marked as "2":1.5W/pcs

Heat sink

Dimensions:140*170*4.5mm; Base plate thickness: 2mm; Fin height:2.5mm,
Fin count:10pcs; fin thickness:0.6mm; Thermal conductivity:180W/(m*K)

Thermal grease

Thickness: 0.3mm; Thermal conductivity:3.5W/(m*K)

 
(4)

ottom side of mainboard

Dimensions:140*170mm; Thermal conductivity:10W/(m*k); Power:3W。

Source of inverse

功率:1.5W/pcs

Heat sink

Dimensions:140*170*4.5mm; Base plate thickness: 2mm; Fin height:2.5mm,
Fin count:10pcs; Fin thickness:0.6mm; Thermal conductivity:180W/(m*K)

Thermal grease

Thickness: 0.3mm; Thermal conductivity:3.5W/(m*K)

 
Descriptions of the heat sink cooling solution:

(1) Add an30*10mm axial fan to increase the air flow through RX module;
(2) Modify the copper fins in front of the fan in order to increase system air flow.

Schematic of the simulation model of the overall cooling layout:
Parameters of the copper fins after the modification:

Copper fins

Dimensions:30*12*0.3mm; Inclination: 1.0; Quantity: 30pcs

Material:C1100; Thermal conductivity:385W/(m*K)。

Heat pipe

D6 heat pipe thickness: 3mm with the pressed-tube technique; Heat pipe type: Powder sintered;
Thermal conductivity:10000W/(m*k)

Add a 30*10mm axial fan; the open area ratio of the new fan inlet is 0.7.

Baffle

Dimensions:160*33*0.5mm; Material: SUS

 
CPU fan operating point: Volume flow rate:2.43ft^3/min Pressure:17.47Pa
Schematic of simulated CPU module temperature and air flow distribution:
 Ambient temperature: 40℃; Maximum temperature of the CPU chipset:64.43℃
Schematic of the simulated temperature distribution on the top side of the RX module:

NO.

Maximum temperature

NO.

Maximum temperature

NO.

Maximum temperature

Source 1

59.43

Source 1.7

59.73

Source 3.1

59.59

Source 1.1

59.54

Source 2

60.02

Source 3.2

59.7

Source 1.2

59.66

Source 2.1

60.19

Source 3.3

59.77

Source 1.3

59.73

Source 2.2

60.16

Source 3.4

59.8

Source 1.4

59.76

Source 2.3

59.96

Source 3.5

59.8

Source 1.5

59.77

Source 2.4

59.76

Source 3.6

59.78

Source 1.6

59.76

 Source 3

 59.48

Source 3.7

59.74

Schematic of the simulated temperature distribution on the bottom side of the RX module:
 

NO.

Maximum

NO.

Maximum

Source 4

60.83

Source 4.4

60.95

Source 4.1

60.53

Source 4.5

60.89

Source 4.2

60.92

Source 4.6

60.8

Source 4.3

60.96

Source 4.7

60.67

Fan operating point:
CPU fan: 2.43ft^3/min ,17.47Pa;
RX fan1: 2.23ft^3/min ,18.65Pa;
RX fan2: 2.5ft^3/min ,17.09Pa;
RX fan3:2.22ft^3/min,18.70Pa。
 
Air flow through fan grilles:
CPU grille:2.26ft^3/min;
RX grille1:1.95 ft^3/min;
RX grille2:2.23 ft^3/min;
RX grille3:1.962ft^3/min;
Total: 8.4ft^3/min。
 
Miniature of the overall air flow trajectory from the simulation results:
 
Summary of the simulation results for the cooling solution:

 

CPU maximum temperature
(℃)

Temperature range of the heat source
(℃)

System air flow
(ft^3/min)

Simulation results of the solution

64.43

60.92~59.43

8.4

The results meet the requirements of CPUtemperature less thanand heat source temperature less than 100℃ and the thermal design is complete.

 

The voice of Winshare Thermal: credit and word

Winshare Thermal Ltd. (hereinafter referred to as Winshare Thermal) was founded in 2009. We specialize in the research and development, production and technical services of high power cooling solutions. We are devoted to becoming the leader in the thermal... [See details]

Copyright: Dongguan Winshare Thermal Ltd.